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Purpose: To examine the ability of multivariate models to predict the heart-rate (HR) responses to some specific training drills
from various global positioning system (GPS) variables and to examine the usefulness of the difference in predicted vs actual HR
responses as an index of fitness or readiness to perform. Method: All data were collected during 1 season (2016–17) with
players’ soccer activity recorded using 5-Hz GPS and internal load monitored using HR. GPS and HR data were analyzed during
typical small-sided games and a 4-min standardized submaximal run (12 km·h−1). A multiple stepwise regression analysis was
used to identify which combinations of GPS variables showed the largest correlations with HR responses at the individual level
(HRACT, 149 [46] GPS/HR pairs per player) and was further used to predict HR during individual drills (HRPRED). Then, HR
predicted was compared with actual HR to compute an index of fitness or readiness to perform (HRΔ, %). The validity of HRΔwas
examined while comparing changes in HRΔwith the changes in HR responses to a submaximal run (HRRUN, fitness criterion) and
as a function of the different phases of the season (with fitness being expected to increase after the preseason). Results: HRPRED

was very largely correlated with HRACT (r = .78 [.04]). Within-player changes in HRΔwere largely correlated with within-player
changes in HRRUN (r = .66, .50–.82). HRΔ very likely decreased from July (3.1% [2.0%]) to August (0.8% [2.2%]) and most
likely decreased further in September (−1.5% [2.1%]). Conclusions: HRΔ is a valid variable to monitor elite soccer players’
fitness and allows fitness monitoring on a daily basis during normal practice, decreasing the need for formal testing.
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The monitoring of various training variables that may offer
insight into players’ training status is of major interest for most
supporting staff in elite team sports. Currently, a large range of
variables can be used to monitor both external and internal load,
and in turn provide information on players’ fitness, fatigue, and/or
readiness to perform.1 However, typical metrics such as distance
covered in different speed zones or heart rate (HR)-related vari-
ables analyzed in isolation are often more influenced by contextual
variables than players’ training status per se.2 As such, there is still
a need for more robust monitoring variables and/or analyses1 that
could be used with confidence, regardless of the daily training
context.

To overcome the limitations inherent in the use of those latter
variables, examining the dose–response relationship between
workload and immediate physiological responses (or more simply
generic models of work efficiency, ie, output/cost relationships)
may represent the first advances to assess training status from data
collected routinely in elite players. The simplest way to assess
players’ locomotor work efficiency is likely to use ratios between
typical internal and external load measures,3 with the lower the
ratio, the greater the efficiency. Recently, such ratios have been
used in the context of elite soccer to assess either the overall
acclimatization and fatigue trends during a training camp in a hot
environment (very likely large increases in rating of perceived
exertion [RPE]/m·min−1 during the first 2 d in Asia [fatigue], trend
of −0.4 RPE/m·min−1 decreased from D1 to D8 [acclimatization
phase]),4 fitness changes following a 2-week preseason training
period (changes in total distance [TD]/HR were largely correlated
with the velocity at lactate threshold [r = −.69], a measure of

aerobic fitness),5 or running efficiency during official games
(TD/HR was very likely slightly decreased during the second
half vs the first half [∼−4.4%]).6While these studies have suggested
that internal to external load ratios could be used as a measure of
fitness or readiness to perform, there remain several limitations to
those studies. In these 3 studies,4–6 TD was used as the unique
measure of external load. It is well known that during soccer
practice, overall running distance is a poor marker of locomotor
demands.7 As such, it is intuitive to think that the inclusion of other
locomotor variables such as high-speed (HS) running, acceleration
counts, or mechanical load2 in those analyses may provide better
estimates of training status.8 In the only study examining the
relationships between those external training load variables and
HR responses to training drills in professional rugby league
players,3 large to almost perfect relationships were reported
between external to internal load ratios and measures of fitness
or load. However, since several non-training-related characteristics
(eg, playing experience, playing position or overall fitness
level) likely affect the relationship between internal and external
load at an individual level,9 the relevance of any external load
metrics to predict internal load is likely player specific. Therefore,
individual models including player-specific combinations of exter-
nal load variables (eg, TD, HS, mechanical work [MechW]) may be
superior to team average–based models for the assessment of
players’ fitness when using data collected during training sessions.

The first aim of this paper was to quantify the individual
relationships (ie, multivariate models) between various field-based
external load measures (ie, locomotor activity during small-sided
games [SSG]) tracked with global positioning system (GPS) and an
objective measure of internal load (ie, HR response to the same
drills) in 10 elite soccer players. The second aimwas to examine the
ability of each individual model to predict the HR responses to4–6

some specific training drills from various GPS variables. The third
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aim of this study was to examine the usefulness of the difference
between predicted versus actual HR responses as an index of
fitness or readiness to perform. If useful enough, this new metric
would allow the assessment of players’ fitness every time an SSG
is played during normal practice, removing the need for formal
testing sessions.

Methods
Participants

Data were collected in 10 field players (26 [5] y; 182 [6] cm;
76 [5] kg; max HR: 198 [10] beats/min [assessed during the 30–15
intermittent fitness test])10 belonging to an elite French football
team. During this period, none of the players suffered from an
injury for which they would request to stop training for more than
1 week. These data emerged from the daily monitoring in which
player activities are routinely measured over the course of the
season. Therefore, ethics committee clearance was not required.11

Nevertheless, the study conformed to the recommendations of the
Declaration of Helsinki.

Methodology

Data Collection. All training data were collected during typical
training sessions (AM or PM sessions, heat index: 16°, range:
0°–33°) during 1 season (2016–17), with player activity recorded
using 5-Hz GPS and 100-Hz accelerometers (SPI-Pro, Team AMS
R1 2016.8; GPSport, Canberra, Australia) and further analyzed
using the Athletic Data Innovations analyzer (ADI; v5.4.1.514;
Sydney, Australia)2 to derive TD (m), HS distance (HS, distance
above 14.4 km·h−1, m), very-high-speed distance (VHS, distance
above 19.8 km·h−1, m), velocity and force load (vL and fL,
respectively, a.u.), and MechW (a.u.). Velocity load refers to
the sum of distance covered weighted by the speed of displacement.
fL refers to the sum of estimated ground reaction forces during all
foot impacts assessed by the accelerometer-derived magnitude
vector.2 MechW is an overall measure of velocity changes and
is computed using >2 ms−2 accelerations, decelerations, and
changes of direction events.12 On average, 9 (1) satellites were
connected during each training session. Players consistently used
the same unit to decrease measurement error.13 HR was monitored
using Polar H1 units (Polar Electro, Kempele, Finland) synchro-
nized with GPS and further analyzed using the ADI analyzer to
derive mean HR during each drill.

Heart rate and GPS data were analyzed during typical SSGs
and a standardized submaximal run. The SSGs included for
analyses were the following: 5v5, 6v6, 7v7, 8v8, 9v9, and
10v10 played as game simulations (with goalkeepers) or posses-
sion drills; surface area: 117 (65) m2 per player.12 A standardized
submaximal run (12 km·h−1 paced with an acoustic reference, over
a 50 × 100-m rectangle course) was performed 4 (1) times through-
out the preseason and early inseason. The average HR during the
last minute of the run was used for analysis.14 All training sessions
were performed on the same hybrid pitch (DESSO GrassMaster;
Tarkett, Nanterre, France), with a mean pitch hardness value
(measured with Clegg Impact soil tester—2.5 kg; Turf-Tec Inter-
national, Tallahassee, FL) of 74 (4) (range: 70–82). Data were then
normalized relative to the drill duration.

Analyses. Model building: A mean of 149 (46) (range: 84–230)
observations per player (2 [1] per session) were used to build
individual models. A multiple stepwise bidirectional regression

analysis was carried out to identify which combinations of
GPS-related variables (TD, HS, VHS, vL, fL, andMechW) showed
the largest correlations with HR responses.

Within-player models were created using R statistical software
(v3.4.1; R Foundation for Statistical Computing) using the step
function of the MASS package (v7.3-47). Then, the relative
importance of each GPS variable was calculated using the
calc.relimp function from the relaimpo package (v2.2.-2). Pre-
dicted HR (HRPRED) was subsequently calculated for each SSG
from the different GPS variables. Because of the likely effect of
heat on HR responses, HRPRED was further adjusted for changes in
temperature (heat index, weather tracker, Kestrel 4500 NV; Kestrel
Weather instrument, Minneapolis, MN) as follows (Equation 1):

HRPRED ð%Þ = HRPRED ðunadjustedÞ þ 0.075

× ðheat index − heat indexmeanÞ (1)

with heat indexmean standing for the mean heat index over the
period of interest (season 16/17).15 Here are 2 examples of indi-
vidual models (Equations 2 and 3) aimed at predicting HRPRED:

P3: HRPRED ð%Þ = 51.52þ 1.47 × fLþ 0.44 × VHS

þ 7.11 ×MechWþ 0.075

× ðheat index − heat indexmeanÞ (2)

P10: HRPRED ð%Þ = 49.18 − 0.41 × TDþ 3.50 × vL

þ 3.65 × fLþ 7.31 ×MechWþ 0.075

× ðheat index − heat indexmeanÞ (3)

Finally, the actual HR (HRACT) response was compared with
HRPRED for each SSG and expressed as a percentage difference to
compute HRΔ (Equation 4), with the higher the difference, the
lower the fitness (eg, when HRACT >HRPRED, HRΔ values are
positive, which suggest a lower fitness than usual).

HRΔ ð%Þ = HRACT − HRPRED (4)

It is worth mentioning that the training data set used to build
individual models was the same data set used for HR prediction,
possibly leading to overfitting. Nevertheless, we are confident in
the results presented in this study since a comparison with similar
models built using data from previous seasons (eg, season
2015–16).

Model validation: The validity of HRΔ to predict players’
fitness and readiness to perform was examined using 2 different
approaches, that is, while examining its change (1) in comparison
with an objective (criterion) measure of fitness (ie, HR responses to
a submax run14) and (2) as a function of the different seasonal
phases (preseason [July], early inseason [August], and inseason
[September]).

In fact, in young soccer players, individual decreases in HR
responses to such a submaximal running test were associated with
very likely improvements in aerobic fitness.16 HR responses to this
submaximal run (HRRUN) were also adjusted for temperature as
shown in Equation 1. Relationships between within-player changes
in HRRUN and within-player changes in the mean HRΔ recorded ±3
days before or after the HRRUN were used to assess the concurrent
validity of HRΔ to estimate players’ fitness. This period of 3 days
corresponds to the average number of days between 2 games,
representing our typical training microcycles.
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Second, we examined changes in HRΔ throughout the presea-
son. In fact, there is generally a progressive increase in fitness from
preseason to early inseason, as evidenced by small to moderate
increases in high-intensity running performance (Yo-Yo Intermit-
tent Recovery Level 2) and decreased HR responses to submaximal
exercise tests (Yo-Yo IR1 test).17,18 Therefore, it was hypothesized
that if HRΔ was to be a good indicator of players’ fitness and
readiness to perform, a progressive decrease would be expected
from July (preseason) to August (end of preseason, start of the
season) and September (early inseason). The average HRΔ over
each month was used to assess the between-month changes in HRΔ.
While we are well aware of the limitations of HR responses to
inform on the actual metabolic cost (mostly oxidative) of exercise,
especially during intermittent exercise,19 it is important to note that
assessing such an absolute oxidative contribution to exercise is not
an objective of this study. Rather, we were simply making the
assumption that changes in HR responses relative to some specific
locomotor demands may be reflective of changes in fitness/readi-
ness to perform.2 For that reason, we believe that the above-
mentioned limitations of HR during intermittent exercise are not
problematic.3,5,6

Statistical Analysis

Data in the text and figures are presented as means with SDs and
90% confidence limits/intervals (CL/CI). The typical error of esti-
mate of the predictions as well as regression coefficient (r) was
calculated for each player to assess the accuracy of the model.20 The
following criteria were adopted to interpret the magnitude of the
correlation (r, 90% CI): ≤.1, trivial; >.1 to .3, small; >.3 to .5,
moderate; >.5 to .7, large; >.7 to .9, very large; and >.9 to 1.0, almost
perfect. Between-month changes in the HRΔ were examined using
standardized differences, based on Cohen d effect size principle. The
scale was as follows: 25% to 75%, possible; 75% to 95%, likely;
95% to 99%, very likely; and >99%, almost certain. Threshold
values for standardized differences were >0.2 (small), >0.6 (moder-
ate), >1.2 (large), and very large (>2). If the 90%CI overlapped small
positive and negative values, the magnitude was deemed unclear;
otherwise, that magnitude was deemed to be the observed magni-
tude.21 Probabilities were used to make a qualitative probabilistic
mechanistic inference about the true differences in the changes,
which were assessed in comparison with the smallest worthwhile
difference (SWD), which was set as 0.2 of the typical error of
estimate.20 When monitoring individuals, longitudinal changes are
generally considered substantial when the probability for change is
≥75%, which occurs when the difference is greater than the sum of
the SWDand the typical error ofmeasurement22 (TE; from reliability
studies = ∼3%).

Results
The average typical error of estimate for the 10 individual multiple
regression analyses was 2.9% (0.3%) as for all SDs. (range: 2.5%–

3.5%) with HRPRED being very largely correlated with HRACT

(r = .78 [.04] [range: .74–.84]) (Figure 1).
Figure 2 showed that fL, MechW, vL, and TD shared the

greatest part of the variance in the regression analyses (31% [17%],
24% [8%], 18% [7%], and 16% [12%], respectively).

Figure 3 presents the MechW performed during the preseason
and early inseason (upper panel) and corresponding HRΔ and
HRRUN (lower panel) in 1 elite soccer player. Overall, HRΔ was
substantially greater than 0 (ie, HRACT >HRPRED) during the first

15 days of training (average HRΔ over the 15 d: +5.2% [3.3%]),
with a substantial trend for a decrease in HRΔ throughout this
period (fromD1 to D15, −0.5 HRΔ·d

−1. HRΔ). In addition, HRΔwas
substantially lower than 0 (ie, HRACT <HRPRED) after day 75
(average HRΔ from day 75 to day 150: −4.9% [6.9%]). Overall,
except for 1 point (day 45), there was a good agreement between
the changes in HRΔ and HRRUN.

Figure 1 — Relationship between predicted HR from GPS data and
actual HR. Data are presented as mean (SD) [range]. Solid and dashed
lines: linear fit with 90% CI. Shades and shapes are set for each player. CI
indicates confidence interval; GPS, global positioning system; HR, heart
rate; HRACT, actual HR; HRPRED, predicted HR; SEE, standard error of the
estimate.

Figure 2 — Relative contribution of the GPS variables to HR responses
during SSG (multiple regression analysis models for each individual
player). fL indicates force load (a.u.·min−1); GPS, global positioning
system; HR, heart rate; HS, distance >14.4 km·h−1 (m·min−1); MechW,
mechanical work (a.u.·min−1); P1 to P10, players 1 to 10; SSG, small-
sided games; TD, total distance (m·min−1); VHS, distance >19.8 km·h
(m·min−1); vL, velocity load (a.u.·min−1).
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Within-player changes during HRΔ were largely correlated
with within-player changes during HRRUN (r, 90% CI = .66,
.50–.82) (Figure 4).

HRΔ very likely decreased from July (3.1% [2.0%]) to August
(0.8% [2.2%]; ES = −0.99 [0.64]; 0/3/97) andmost likely decreased
further in September (−1.5% [2.1%]; −1.96 [0.95]; 0/0/100). HRΔ

likely decreased fromAugust to September (0.8% [2.2%] vs −1.5%
[2.1%], −0.98 [0.88], 2/5/95).

Discussion
The aim of this study was to quantify the relationships between
various measures of external (GPS variables) and internal (HR)
load measures in elite soccer players and assess if the differences
between the HR predicted from GPS variables and that actually
measured (ie, HRΔ) could be used to predict players’ fitness
and readiness to perform. The key findings were the following:
(1) HR responses during SSGs (HRACT) were largely related to
locomotor activity (GPS variables) (Figure 1), with fL and MechW
sharing the greatest part of the variance in the model (Figure 2);

(2) within-player changes in HRΔ were largely correlated with
those in HRRUN (Figure 4); and (3) HRΔ decreased progressively
from the preseason to early inseason (Figure 5).

Model Construction

Our results reported that the HRs predicted from GPS variables
during SSGs were very largely correlated (r = .78 [.04]) with the
HR responses actually measured (Figure 1). Furthermore, we
observed that fL and MechW were the greatest predictors of
HR responses (31% [17%] and 24% [8%], respectively), whereas
TD- and HS-related variables explained less than 30% of the total
variance (16% [12%], 5% [6%], and 6% [7%] for TD, HS, and
VHS, respectively). More specifically, for a player equation based
on fL, VHS, and MechW (Equation 2), a 20% increase in either
MechW or VHS would be expected to lead to a 2.4% or 0.5%
increase in HR response, respectively. Interestingly, while a
majority of studies have focused on the relationships between
relative distance (m·min−1) or locomotor-related measures (HS
and TD) and HR,23 the results of this study demonstrated that

Figure 3 — Changes inMechW (a.u., upper panel), HRΔ, and HRRUN (lower panel) during preseason and early inseason in 1 representative elite soccer
player. This player was chosen over the 9 others for different reasons, including the fact that he did not suffer from any major injuries, which allowed
researchers to obtain data continuously throughout the entire year. Upper panel—gray bar, training session; black bar, match. Lower panel—dark gray
circles/stars, 75% of substantial increase in HRΔ and HRRUN; black point, 75% of substantial decrease in HRΔ and HRRUN; light gray point, unclear
changes in HRΔ and HRRUN. Gray area stands for trivial changes. Each data point is provided with its TE (when multiple SSGs values were combined, the
data points represent the mean and the TE is adjusted for the number of measures [see Methods section]). HR indicates heart rate; HRRUN, HR responses
to a submaximal run; MechW, mechanical work; SSG, small-sided games; TE, typical error.
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Figure 4 — Between-months changes in the differences between actual and predicted HR. GPS indicates global positioning system; HR, heart rate;
HRΔ, difference between the HR predicted from the GPS variables and the actual HR. Data point shades and shapes are set for each player.

Figure 5 — Relationship between within-player changes in HRΔ and HRRUN in elite soccer players. HRRUN: HR during the last minute of the
4-minute standardized submaximal running protocol. HRΔ: difference between predicted HR from the GPS variables and the actual HR response. y and
x axes cut the figure into 4 quadrants. Players in the upper right quadrant present both greater HRΔ and HRRUN values, suggesting that they lack both
generic and specific fitness. In the bottom left quadrant, players present both lower HRΔ and HRRUN values, suggesting that these players gained both
generic and specific fitness. Finally, some players in the upper left quadrant report greater HRΔ values but lower HRRUN values, suggestive of generic
fitness but a lack of specific fitness. Note that there are no data point in the lower right quadrant, which would imply an unexpected (less probable)
scenario: players unfit at the general level but showing specific fitness. GPS indicates global positioning system; HR, heart rate; HRRUN, HR responses
to a submaximal run.
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HR during soccer-specific training drills is more related to the
mechanical demands of the task (acceleration, decelerations, and
changes of direction). The results of this study confirmed the major
importance of MechW and fL when estimating internal load2 and
the necessity of considering these 2 variables when assessing load
and, in turn, planning training.

While group responses are helpful to understand the overall
relationships between internal and external load, substantial
between-player variations in this relationship were reported in
this study (Figure 2). Indeed, whereas MechW shared the greatest
part of the variance at a group level (24%), at individual level
MechW accounted for 12% to 34% of the variance of HRACT. By
contrast, TD only accounted for 16% of the variance at the team
level, whereas individual values ranged from 0% to 34%. As such,
it is important for each player to be treated individually when
building models examining the training response. Indeed, factors
such as fitness,5 neuromuscular capacity, playing position, or
playing experience9 can modify the way internal load is related
to external load. This result has several implications for training
planning and further highlights the need for practitioners to assess
and monitor training loads at the individual level. For example,
given the very large between-player differences in the locomotor/
HR response relationships (Figure 2), it is likely that players’ HR
would respond differently to different types of drills. There may be
players for whom high levels of HR may be better reached through
increased MechW·min−1 (as with SSGs including a low number
of players over small spaces), whereas for others, this would be
achieved through increases in HS running (larger number of
players and more running space, or run-based interval training).

Case Study Example

To interpret clear individual changes in HRΔ, it is necessary to
know the minimum difference that matters, that is, that which can
be assessed with a probability of at least 75% (SWD + TE22). In this
study, the SWD for the different individual models ranged from
0.5% to 0.7%. Considering that the TE of HR during training bouts
is about 3%,14 changes of at least ∼4% (SWD ∼1% + TE 3%) were
required to ensure that changes in HRΔ were real at the individual
level. However, it is worth noting that this required 4% difference
can be decreased with repeated measurements, improving the
sensitivity of the monitoring. In fact, since the TE is inversely
related to the number of measurements performed (TE decreases as
a factor of

ffiffiffi

n
p

measures),24 practitioners can decrease the 3% value
by pooling multiple drills performed in the same session or pooling
multiple sessions. In Figure 4, TE was adjusted on the number of
distinct SSGs performed during each session (between 1 and 4).
Based on these data, we were able to easily assess changes in HRΔ

and HRRUN during preseason and early inseason. In this case study,
HRΔ clearly decreased during the 15 first days of the preseason,
likely reflecting the expected fitness improvement. In addition, it
is noteworthy that changes in HRΔ were concomitant with those
in HRRUN, except at 1 time point (ie, day 45) where the change in
HRRUN was unclear, whereas that in HRΔ was clearly above 0.
While data are lacking to explain this unique dissociation between
the changes in HRΔ and HRRUN, acute change in hydration status
and plasma/fluid shifts can sometimes cause large changes in HR
from one day to another independent of fitness.25

Association Between HRΔ and HRRUN

Our results reported that within-player changes in HRΔ were mod-
erately correlated with within-player changes in HRRUN (used as

a criterion measure of fitness, r = .66 [.50–.82], Figure 4), con-
firming the potential of HRΔ to inform practitioners on changes
in player fitness through the season when only looking at HR
responses to SSGs. However, while the fact that the correlation was
not perfect could be seen as a limitation of the usefulness of HRΔ,
it is in contrast a very good point. This suggests that HRΔ may
reflect something slightly different than HRRUN. We believe that
the 4 quadrants defined by the 2 axes in Figure 4 could be used to
understand players’ specific needs in terms of conditioning. It is
generally believed that fitness (as many other physical capacities)
can be regarded from 2 different angles: a general component
mostly related to cardiopulmonary performance during generic
types of exercise bouts (ie, straight-line running such as during
the submaximal run), versus a soccer-specific fitness with a greater
neuromuscular component that relates to the ability to perform
and repeat specific types of locomotor actions such as repeated
accelerations, decelerations, and changes of direction (as during
SSGs).26 Following these lines, and while still hypothetical given
the low number of players examined and the limited time window
analyzed (ie, 1 season), it could be hypothesized that whereas
HRRUN may be used as an index of generic fitness, HRΔ could be
more used as a measure of soccer-specific fitness. In fact, when it
comes to preseason conditioning,26 players generally transition
from unfit (top right quadrant, both HRΔ and HRRUN greater than
usual) to generally fit (mid preseason, top left quadrant, HRRUN

improved but not HRΔ), before becoming specifically fit at the
end of the preseason (bottom left quadrant, both HRΔ and HRRUN

improved). Interestingly and in line with our proposal, it is note-
worthy that there were no players reported in the bottom right-hand
corner, suggesting that generic fitness is needed to build soccer-
specific fitness. Analyzed in light of HRRUN performance, HRΔ

could provide key information for practitioners to better understand
when a player needs more generic running conditioning (eg, during
early preseason or after an injury) versus more soccer-specific
training (eg, high MechW tolerance, specific strength training,
actions with the ball more generally inseason).

Changes in HRΔ From the Preseason to Early
Inseason

Interestingly, we also observed a progressive decrease in HRΔ

from July to August and then September (Figure 5). Since
players’ fitness generally increases from the preseason to early
inseason (eg, moderate increases in Yo-Yo IR2 performance in
elite soccer players; ES = ∼0.80),17 the corresponding large
change in HRΔ (ES = 1.96 [0.95]) confirms again its sensitivity
to changes in fitness. The monitoring of HRΔ on a regular basis
could probably allow practitioners to assess whether players are
gaining fitness (or not) throughout the preseason and early
inseason, whereas external or internal load measures used sepa-
rately cannot. This new model might provide practitioners with a
simple tool to better understand the dose–response relationship
between training load and fitness, and allow the monitoring of
players’ fitness at a higher frequency, that is, every time an SSG
is played (almost daily) and, most importantly, during normal
practice (no formal testing needed).

Limitations

First, the present monitoring approach cannot be used with players
with only limited historical data (eg, for new signings some time to
build the models is needed [≥60 data points,27 ∼6–8 wk]). Second,
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players need to be compliant with wearing an HR belt during
training, which is not always without complication. Third, errone-
ous HR is common during team sport training due to shocks and
contacts, which can result in erroneous HR interpretations if care is
not applied to correct each file, potentially biasing the fitness
estimates. We also agree that timing of the SSG, both during the
session and the week, may affect the actual relationships between
locomotor activity and HR responses (ie, for the same external
work). HR may be higher during SSGs played at the end of a
session as a consequence of a possible cardiac drift,28 or lower the
day following a heavy session as a consequence of a likely plasma
volume expansion.29 This could not be accounted for in this study
and has likely decreased the magnitude of the associations between
GPS variable and HR responses. Nevertheless, we believe that the
monitoring of trends in HRΔ changes (rather than day-to-day,
isolated changes) should partially overcome this limitation. It is
also worth noting that GPS with a greater sampling frequency may
allow the collection of more reliable data,30 which may increase
the strength of the relationships observed between GPS variables
and HR responses. The models presented in this study may be-
come more robust in the future with the use of more advanced
technology.

Practical Applications
• MechW and fL are the greatest predictors of the HR responses
to SSGs, highlighting the importance of considering these 2
GPS/accelerometers-derived variables when assessing load
and planning training.

• HRΔ computed from both external (GPS) and internal (HR)
load variables can be used to track players’ fitness through the
preseason and early inseason. A moderate ∼4% decrease in
HRΔ (similar to a ∼5% decrease in HRRUN) (Figure 4) is likely
indicative of ~4% increase in maximal aerobic speed
(0.5 km·h−1).16

• This approach allows monitoring on a daily basis during
normal practice, eliminating the need for formal fitness
testing.

• HRRUN and HRΔ can be used together to define players’
conditioning needs (eg, generic vs soccer-specific fitness).

Conclusions
In this study, we have observed large and player-dependent
associations between the HR responses to SSGs and some of
the locomotor/mechanical demands of those SSGs as assessed
using GPS and accelerometers. We then demonstrated that HRΔ

(ie, the difference between the predicted and actual HR responses to
SSGs) can be confidently used to track changes in players’ fitness
throughout the season while using data collected during game play
only. While further larger-scale studies are needed to confirm our
preliminary results, these findings open new opportunities for
practitioners willing to monitor players’ fitness on a regular basis,
decreasing the need for formal testing.
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